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A new collocated finite-volume-based solution procedure for predicting viscous
compressible and incompressible flows is presented. The technique is equally appli-
cable in the subsonic, transonic, and supersonic regimes. Pressure is selected as a
dependent variable in preference to density because changes in pressure are signif-
icant at all speeds as opposed to variations in density, which become very small at
low Mach numbers. The newly developed algorithm has two new features: (i) the
use of the normalized variable and space formulation (NVSF) methodology to bound
the convective fluxes and (ii) the use of a high-resolution scheme in calculating in-
terface density values to enhance the shock-capturing property of the algorithm.
The virtues of the newly developed method are demonstrated by solving a wide
range of flows spanning the subsonic, transonic, and supersonic spectrum. Results
obtained indicate higher accuracy when calculating interface density values using a
high-resolution scheme. © 2001 Academic Press

Key Wordsfinite-volume method,; all speed flows; pressure-based algorithm; high-
resolution schemes.

INTRODUCTION

In computational fluid dynamics (CFD), great research efforts have been devoted tc
development of accurate and efficient numerical algorithms suitable for solving flows in
various Reynolds and Mach number regimes. The type of convection scheme to be us
a given application depends on the value of Reynolds number. For low Reynolds nun
flows, the central difference or hybrid scheme is adequate [1]. In dealing with flows of h
Reynolds number, numerous discretization schemes for the convection term arising it
transport equations have been employed [2—-11]. On the other hand, the Mach number:
dictates the type of algorithm to be utilized in the solution procedure. These algorithms
be divided into two groups: density-based methods and pressure-based methods, wil
former used for high Mach number flows, and the latter for low Mach number flows.
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102 MOUKALLED AND DARWISH

density-based methods, continuity is employed as an equation for density, and presst
obtained from an equation of state. In pressure-based methods, continuity is utilized
constraint on velocity and is combined with momentum to form a Poisson-like equation
pressure. Each of these methods is appropriate for a specific range of Mach number ve

The ultimate goal, however, is to develop a unified algorithm capable of solving flc
problems in the various Reynolds and Mach number regimes. To understand the diffic
associated with the design of such an algorithm, it is important to understand the rols
pressure in a compressible fluid flow [12]. In the low Mach number limit where dens|
becomes constant, the role of pressure is to act on velocity through continuity so that cor
vation of mass is satisfied. Obviously, for low speed flows, the pressure gradient need
drive the velocities through momentum conservation is of such magnitude that the der
is not significantly affected and the flow can be considered nearly incompressible. Hel
density and pressure are very weakly related. As a result, the continuity equation is de
pled from the momentum equations and can no longer be considered as the equatic
density. Rather, it acts as a constraint on the velocity field. Thus, for a sequential solutio
the equations, it is necessary to devise a mechanism to couple the continuity and mome
equations through the pressure field. In the hypersonic limit where variations in velo
become relatively small as compared to the velocity itself, the changes in pressure do
nificantly affect density. In this limit, the pressure can be viewed to act on density alc
through the equation of state so that mass conservation is satisfied [12], and the contil
equation can be viewed as the equation for density. This view of the two limiting ca:
of compressible flow can be generalized in the following manner. In compressible fl
situations, the pressure takes on a dual role to act on both density and velocity througl
equation of state and momentum conservation, respectively, so that mass conservat
satisfied. For a subsonic flow, mass conservation is more readily satisfied by pressure |
encing velocity than by pressure influencing density. For a supersonic flow, mass conse
tion is more readily satisfied by pressure influencing density than by pressure influen
velocity.

The above discussion reveals that for any numerical method to be capable of predic
both incompressible and compressible fluid flow, the pressure should always be allowe
play its dual role and to act on both velocity and density to satisfy continuity. Neverthele
through the use of the so-called pseudo or artificial compressibility technique [13, 14],
eral density-based methods for fluid flow at all speeds have been developed. These me
encountered difficulties in efficiently avoiding the stiff solution matrices that greatly d
graded their rate of convergence. To overcome this problem and ensure convergence
all speed ranges, preconditioning of the resulting stiff matrices was introduced and se\
methods (e.g., Turkel [15], Choi and Merkle [16 ], Turkéhl.[17], Tweedtet al.[18], Van
Leeret al.[19], Weiss and Smith [20], Merklet al.[21], and Edwards and Liou [22] to
cite a few) using this promising technique have appeared in the literature. Recently, Tu
[23] presented an extensive review of the preconditioners given by Turkel [15, 24], C
and Merkle [16], and Van Least al.[19].

At the other frontier, several researchers [12, 25-40] have worked on extending
range of pressure-based methods, with various degrees of success, to high Mach nur
following either a staggered grid approach [12, 25-27] or a collocated variable formulat
[28—-35]. The method of Shyy and Chen [26], developed within a multigrid environme
uses a second-order upwind scheme in discretizing the convective terms. Moreover, at
Mach number values, a first-order upwind scheme is employed for evaluating the densi
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the control volume faces. Yarg al. [28] used a general strong conservation formulatiol
of the momentum equations that allows several forms of the velocity components ftc
chosen as dependent variables. In the method developed by Marchi and Maliska [29], v
for density, convection fluxes, and convection-like terms at the control volume faces
calculated using the upwind scheme. Demirdzl.[30], however, used a central difference
scheme blended with the upwind scheme to evaluate these quantities. Lien and Lesct
[31, 32] adopted the streamwise-directed density-retardation concept, which is controlle
Mach-number-dependent monitor functions, to account for the hyperbolic character of
conservation laws in the transonic and supersonic regimes. Politos and Giannakoglou
developed a pressure-based algorithm for high-speed turbomachinery flows also folloy
the retarded density concept. In their method, unlike the work of Lien and Leschziner |
32], the retarded density operates only on the velocity component correction during
pressure-correction phase. Chen and Pletcher [34] developed a coupled modified stra
implicit procedure that uses the strong conservation forms of Navier—Stokes equations
primitive variables. Issa and Javareshkian [35] introduced a pressure-based compre:
calculation method, using Tatal Variation Diminishing (TVD) schemes, that has a resolu
quality similar to that obtained when applied in density-based methods. The method
Karimian and Schneider [36—38] and Darbandi and Schneider [39, 40] are formulated wi
a control-volume-based finite element framework. While Karimian and Schneider [36—
used primitive variables in their formulation, Darbandi and Schneider [39, 40] employ
the momentum components as dependent variables.

From the aforementioned literature review, it is obvious that in most of the publist
work the first-order upwind scheme is used to interpolate for density when in the sot
of the pressure correction equation; an exception occurs in the work presented in [30
where a central difference method is adopted. In the technique developed by Demir
et al. [30], the second-order central difference scheme blended with the upwind sch
is used. The bleeding relies on a factor varying between 0 and 1. In the work prese
in [31-33], the retarted density concept is utilized in calculating the density at the con
volume faces. This concept is based on factors that are problem-dependent and requir
addition of some artificial dissipation to stabilize the algorithm (second-order terms w
introduced), which complicate its use.

To this end, the objective of this paper is to present a newly developed pressure-b
solution procedure that is equally valid at all Reynolds and Mach number values.
collocated variable algorithm is formulated on a nonorthogonal coordinate system u:
Cartesian velocity components. The method is easy to implement, highly accurate,
does not require any explicit addition of damping terms to stabilize it or to properly reso
shock waves. Moreover, the algorithm has two new features. The first one is the us
the normalized variable formulation (NVF) [41] and/or the normalized variable and sp:
formulation (NVSF) [42] methodology in the discretization of the convective terms. -
the authors’ knowledge, the NVF/NVSF methodologies have never been used to bc
the convective flux in compressible flows. Mainly low-order schemes or the TVD [3
43] formulation have been adopted. The second one is the use of high-resolution (
schemes in the interpolation of density appearing in the mass fluxes in order to enhanc
shock-capturing capability of the method.

In what follows, the governing equations for compressible flows are presented
their discretization detailed to lay the groundwork for the derivation of the pressu
correction equation. Then, the increase in accuracy with the use of HR schemes for den:
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demonstrated. This is done by comparing predictions, for a number of problems, obta
using the third-order SMART scheme [8] for all variables except density (for which tl
upwind [1] scheme is used) against another set of results obtained using the SMART sct
for all variables including density.

GOVERNING EQUATIONS

The equations governing the flow of a two-dimensional compressible fluid are the co
nuity equation, the\ momentum equations, and the energy equation. This set of nonline
coupled equations is solved for the unknowns, T, andP. In vector form, these equations
may be written as

op _
SV (v =0 1)
1
a(g)tv) £V (W) = =P+ V- (V) + ZV(uV - V) )
0PT) L g (ovT) = 1{V-(kVT)+ﬁT {ap LV (PV)— PV~(V)] +d>+q},
ot Cp ot
)
where

au\?  [ov)? u  av\? 2
S =p2|(— — —+— ] —Z(V-v? 4
“{ l<8x> +<ay>]+<ay+ax> 3¢ V)} )
andg is the thermal expansion coefficient, which is equalt® for an ideal gas. In addition

to the above differential equations, an auxiliary equation of state relating density to pres
and temperaturép = f (P, T)) is needed. For an ideal gas, this equation is given by

P

= ﬁ =CpP, (5)

0
whereR is the gas constant.
A review of the above differential equations reveals that they are similar in structure

a typical representative variable is denotedghyhe general differential equation may be
written as

d

% + V- (pvg) =V - (I"V¢) + Q, (6)
where the expressions fo¥ and Q¢ can be deduced from the parent equations. The fol
terms in the above equation describe successively unsteadiness, convection (or advec
diffusion, and generation/dissipation effects. In fact, all terms not explicitly accounted
in the first three terms are included in the catchall source @fm

FINITE VOLUME DISCRETIZATION

The general transport equation (Eq. (6)) is discretized using the control volume mett
ology. For that purpose, Eq. (6) is integrated over the control volume shown in Fig. 1¢
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FIG. 1. (a) Control volume; (b) control volume nodes; (c) normalization; (d) CBC.
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yield, upon applying the divergence theorem, the discretized equation

0
L (PPIPIR + Al(ove — I'’A¢) - Sp = Q%Q. 7

Inthe above equation, teoperator is the discretized version of the surface integral defin
by

A[¢]P = ¢e+¢w +¢n +¢s~ (8)

Hence, Eqg. (7) can be written as

a d
a[(/@)p]ﬂ +A[J]e = ﬁ[(mﬁ)p]Q + e+ d+ I+ k) = Q%Q. ©)
In EqQ. (9),J; represents the total flux @f across face f” and is given by
Ji = (pvp —T?Ve)s - S, (10)

whereS;s is the surface vector of cell facd ©” The flux J is a combination of the convection
flux J¢ = (pve)+ - St and diffusion fluxJP = (—I'*V,) - S¢.

From Eqg. (9), it is obvious that the total fluxes are needed at the control volume fa
where the values of the dependent variables are not available and that they should be obit
by interpolation. Therefore, the accuracy of the solution depends on the proper estime
of these values as a function of the neighboxgngode values.

The discretization of the diffusion fluXP does not require any special consideration an
the method adopted here is described in Zweasl. [44].

The discretization of the convection flux is, however, problematic and requires spe
attention. The convection flux gf through the control volume facef® may be written as

JF = (ov@)1 - St = Fioys, (11)

whereg¢¢ stands for the mean value gfalong cell face f,” and Fs = (pv - S)¢ is the
mass flow rate across fade Using some assumed interpolation proffie can be explicitly
formulated by a functional relationship of the form

¢t = f(dnp), (12)

wheregyg denotes the values at the neighboring nodes. The interpolation profile shou
be bounded in order not to give rise to the well-known dispersion error problem [2]. In tl
work, HR schemes formulated in the context of the NVSF methodology, which is explair
in the next section, are used. For the representation of the unsteady term, the grid-|
value of¢ is assumed to prevail throughout the control volume, and the time derivative
approximated using a Euler-implicit formulation.

The discretized equation, Eq. (9), is transformed into an algebraic equation at the r
grid point P by substituting the fluxes at all faces of the control volume by their equivale
expressions. Then, performing some algebraic manipulations on the resultant equs
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the following algebraic relation, linking the value of the dependent variable at the cont
volume center to the neighboring values, is obtained:

abgp = > alghns + bp. (13)

NB(P)

For the solution domain as a whole a systenNoéquations irN unknown results, where
N is the number of control volumes. Owing to the nonlinear nature of the set of equatic
the discretized equations are solved by the use of iterative methods. The algorithm us
this work is the Tri-Diagonal Matrix Algorithm (TDMA) [45].

THE NVSF METHODOLOGY FOR CONSTRUCTING HR SCHEMES

As mentioned earlier, the discretization of the convection flux is not straightforward ¢
requires additional attention. Since the intention is to develop a high-resolution algoritl
the highly diffusive first-order upwind scheme [1] is excluded. As such, a high-order int
polation profile is sought. The difficulties associated with the use of such profiles stem fi
the conflicting requirements of accuracy, stability, and boundedness. Solutions predi
with high-order profiles tend to provoke oscillations in the solution when the local Pec
number is high in combination with steep gradients of the flow properties. To suppr
these oscillations, many techniques have been advertised and may be broadly classifie
two groups: the flux blending method [46—49] and the composite flux limiter method
41-43, 50]. The latter is the one adopted here. In this technique, the numerical flux a
interface of the computational cell is modified by employing a flux limiter that enforci
boundedness. The formulation of high-resolution flux limiter schemes on uniform grid |
recently been generalized by Leonard [41, 50] through the normalized variable formula
(NVF) methodology and on nonuniform grid by Darwish and Moukalled [42] through tt
normalized variable and space formulation (NVSF) methodology. The NVF and NV
methodologies have provided a good framework for the development of HR schemes
combine simplicity of implementation with high accuracy and boundedness. Moreovel
the authors’ knowledge, the NVSF formulation has never been used to bound the cor
tion flux in compressible flows. It is an objective of this work to extend the applicabili
of this technique to compressible flows. Therefore, before introducing the high-resolu
algorithm, a brief review of the NVSF methodology is in order.

Figure 1b shows the local behavior of the convected variable near a control-volume f
The node labeling refers to the upstream, central, and downstream grid points designat
U, C, andD, located at distancey, &c, andép from the origin, respectively. The values
of ¢ at these nodes are designatedpyy ¢c, andgp, respectively. Moreover, the value of
the dependent variable at the control volume face located at a distarficen the origin
is expressed by ;. With this notation, the normalized variables are defined as

¢ —du £ §—&y

?= o —du Ep— &y

(14)

The use of the above-normalized parameters simplifies the functional representatic
interpolation schemes (Fig. 1c) and helps define the stability and boundedness condi
that they should satisfy.
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Based on the normalized variable analysis, Gaskell and Lau [8] formulated a convec
boundedness criterion (CBC) for implicit steady flow calculation. This CBC states that fc
scheme to have the boundedness property, its functional relationship should be contint
it should be bounded from below iy = ¢ and from above by unity, and in the monotonic
range(0 < ¢c < 1), it should pass through the points (0,0) and (1,1), and ferdc or
dc < 0, the functional relationshif (¢c) should equalpc. These conditions are shown
graphically in Fig. 1d.

Knowing the required conditions for boundedness, the shortcomings of high-order (F
schemes were eliminated through the development of HR schemes satisfying all al
requirements. Without going into detail, a number of HR schemes were formulated us
the NVF/NVSF methodologies, and the functional relationship for the SMART scheme
extensively used in this work is given by

LEaertde  0<do<k

5= Saoge+ Mt E < ge < Btk -k s
1 %(1+§f—§c)§<i;c<l
b elsewhere

For more details the reader is referred to Darwish and Moukalled [42].

HIGH-RESOLUTION ALGORITHM

The need for a solution algorithm arises in the simulation of flow problems becau
a scalar equation does not exist for pressure. Rather, the pressure field acts indirect
the velocity field to constrain it to satisfy the continuity equation. Hence, if a segrega
approach is to be adopted, coupling amonguhe, p, and P primitive variables in the
continuity and momentum equations will be required. Evidently, the whole set of equati
could be solved directly (after linearization) since the number of equations equals
number of unknowns. However, the computational effort and storage requirements ne
by such an approach are often prohibitive. This has forced researchers to seek less expe
methods and resulted in the development of several segregated solution algorithms [1
57]. Recently, Moukalled and Darwish presented a unified formulation of these algorith
[58].

The segregated algorithm adopted in this work is the SIMPLE algorithm [1, 51], whi
involves a predictor and a corrector step. In the predictor step, the velocity field is calculz
based on a guessed or estimated pressure field. In the corrector step, a pressure
pressure-correction) equation is derived and solved. Then, the variation in the pres
field is accounted for within the momentum equations by corrections to the velocity &
density fields. Thus, the velocity, density, and pressure fields are driven, iteratively
better satisfying the momentum and continuity equations simultaneously and converge
is achieved by repeatedly applying the procedure described above.

Before presenting the pressure-correction equation, the discretized momentum eque
are first written in the notationally more suitable form

Vp — H[V]p = —Dp(VP)p, (16)
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where
_ [Hlule _|DBluls O _|(vP)p-i | [(VP)E
HMP‘{HMJ DP‘{ 0 D[v]J WP)P‘[(VP)»J}‘LVP%} a7
¢ ¢
(VP)pzé/VPdQ Hlglp = ZNeR R TDE ) @ g
Q ab al

In the above equations is the volume of celP, and the subscripts w, n, ands refer to
values at the east, west, north, and south faces of the control volume (Fig. 1a).

For the calculation of the mass fluxes across the control volumefdges v+ - S;) and
for checking mass conservation, the values of the velocity components are needed t
In order to avoid oscillations which may result if a simple linear interpolation method
used, a special interpolation practice is employed as suggested by Rhie [59], Peric [48]
Majumdar [60].

The Pressure-Correction Equation

As mentioned earlier, the convergence in the segregated approach is driven by the cc
tor stage where a pressure (or a pressure-correction) equation is solved. Therefore, th
phase in developing a segregated solution algorithm is to derive such an equation. Follo
the SIMPLE procedure, the momentum and continuity equations are combined to yielc
pressure-correction equation, which, in discretized form can be written as

QCp

—¢ Pp +AICUTPTe — Alp"D(VP) - Slp = -

(pp — Pp)

s @ AlTUTe. (19)

From the above equation, it is clear that the starred continuity equation appears
source term in the pressure-correction equation. Moreover, in a pressure-based algot
the pressure-correction equation is the mostimportant equation that gives the pressure,
which all other variables are dependent. Therefore, the accuracy of the predictions dep
on the proper estimation of pressure from this equation. Definitely, the more accurate
interpolated starred density*) values at the control volume faces are, the more accurate
predicted pressure values will be. The use of a central difference scheme for the interpol;
of p* leads to instability at Mach numbers near or above 1 [12, 27]. On the other hand,
use of a first-order upwind scheme leads to excess diffusion [27]. The obvious solutio
the aforementioned problems would be to interpolate for valug$ af the control volume
faces in the same way interpolation for other dependent variables is carried out; in
words, the solution would be to employ the bounded HR family of schemes for which
problem-dependent factors are required. Adopting this strategy, the discretized form o
starred steady continuity equation becomes

A[p*U*Te = (p2)™Ug + (03) U + (o) ™RUL + ()™ (20)

The same procedure is also adopted for calculating the density when computing the |
flow rate at a control volume face in the general conservation equation.

Upon discretizing the pressure-correction equation (19), an algebraic equation simil;
Eq. (13) is obtained at every grid point in the domain. The collection of these equati
forms a system that is solved to obtain the pressure-correction field.
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BOUNDARY CONDITIONS

The solutions to the above system of equations require the specification of boun
conditions of which several types are encountered in flow calculations, such as inflow,
flow, and no-flow (impermeable walls and symmetry lines). Details regarding the varic
types and their implementation for both incompressible and compressible flow calculati
are well documented in the literature and will not be repeated here. However, it shoulc
stressed that the convergence of the computations greatly depends on the proper imple
tation of these conditions.

RESULTS AND DISCUSSION

The validity of the solution procedure just described is demonstrated in this sectior
presenting solutions to the following four inviscid test cases: (i) flow in a convergin
diverging nozzle, (ii) flow over a bump, (iii) supersonic flow over a step, and (iv) tf
unsteady duct filling problem. For all problems, unless otherwise stated, computations v
terminated when the maximum residual over the domain and for all dependent varia
fell below 107°.

Flow in a Converging—Diverging Nozzle

The first test selected is a standard one that has been used by several researche
comparison purposes [30, 31]. The problem is first solved using a pseudo-one-dimensi
variable area code. The cross-sectional area of the nozzle varies as

2
S = Sn+ (S — Sn) (1— g) , (21)
where § = 2.035 andSy = 1 are the inlet and throat areas, respectively, ard>0<
10. Solutions are obtained over a wide range of inlet Mach numbers ranging from
incompressible limit 1 = 0.1) to supersonicNl = 7), passing through transonic with
strong normal shock waves, and are presented in Figs. 2—4.

Results displayed in Figs. 2a, 2b, and 2c are for inlet Mach numbers of 0.1, 0.3,
7, respectively. In these plots, two sets of results generated over a uniform grid of siz¢
control volumes are compared against the exact analytical solution. The first set is obta
using the third-order SMART scheme [2] for all variables except density (for which tl
upwind [21] scheme is used). In the second set however, the SMART scheme is use
all variables including density. Results shown in Fig. R&,(= 0.1, subsonic throughout)
indicate that the solution is nearly insensitive to using an HR scheme when interpola
for density. This is expected, since for this inlet Mach number value, variations in den:
are small and the flow can be considered to be nearly incompressible.

For Mi, = 0.3 (Fig. 2b), the backpressure is chosen such that a supersonic flow is obtal
in the diverging section (i.eMy, = 1, transonic). The Mach number distributions after the
throat are depicted in Fig. 2b. As shown, the use of an HR scheme for interpolating the va
of density at the control volume faces improves predictions. In fact, displayed results re
that the profile predicted with values of density at the control volume faces calculated u:
an HR scheme is nearly coincident with the exact solution. The Mach number distributi
depicted in Fig. 2c are for a fully supersonic flow in the nozzle. The trend of results is sim
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FIG. 2. Comparison of Mach number variation for an inlet Mach number of value (a) 0.1 (subsonic), (b)
(transonic), (c) 7 (supersonic), and (d) 0.3 (transonic with normal shock wawes=at or X = 9).

to that of Fig. 2b. Again, important improvements are obtained when using the SMA
scheme for density interpolation.

The accuracy of the new technique in predicting normal shock waves is revealed by
Mach number distributions displayed in Fig. 2d. Two backpressure values that cause no
shock waves at = 7 andx = 9 are used. For each backpressure, three different solutic
(one using the upwind scheme for all variables, the second one using the SMART sch
for all variables, the third one using the SMART scheme for all variables except density
which the upwind scheme is used) are obtained and compared against the exact soll
All solutions are obtained by subdividing the domain into 121 uniform control volume
As shown, predictions obtained using the upwind scheme for all variables are very sm
but highly diffusive and cause a smearing in the shock wave.

Results obtained using the SMART scheme for all variables except density are n
accurate than those obtained with the upwind scheme and cause less smearing in the
waves. The best results are, however, obtained when employing the SMART scheme f
variables including density. The plots also reveal that solutions obtained using the SM/
scheme show some oscillations behind the shock. This is a feature of all HR schel
The oscillations are usually centered on the accurate solution and are reduced with
refinement in both wavelength and amplitude [28].
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FIG. 3. Comparison of % error in the solution of one-dimensional (a) subsdic£ 0.1), (b) supersonic
(Min = 7), and (c) transonicNi, = 0.3 with a normal shock wave at= 7) nozzle flow.

To highlight the performance characteristics of the new density treatment in the press
based method, a series of solutions for some of the above-mentioned cases was gen
using different grid sizes. A summary of error norms versus the number of grid points use
presented in Fig. 3. Figures 3a and 3b are for inlet Mach numbers of 0.1 and 7, respecti
Figure 3c, however, is for an inlet Mach number of 0.3 with a normal shock wave-af.
The number of grid points was varied from 21 to 2000. Since an exact analytical solu
is available, the error was defined as

N _
YErTOr — MAlX {100|¢exact ¢computed}' (22)
i=

exact

The trend of results is similar to that discussed above with the percent error generally
creasing with increasing the grid density. The virtues of using an HR scheme for compu
interface density values are more pronounced at high Mach numbers (Figs. 3b and 3c
all cases, the worst solution is obtained when using the upwind scheme for all variables,
the best one is attained when utilizing the HR SMART scheme for all variables. As depic
in Fig. 3, the improvement when using an HR scheme for density decreases with incres
the number of grid points. This is expected since all approximations should converge tc
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exact solution as the grid size approaches infinity (Fig. 3). Moreover, it may be of intel
to mention that the optimum value of the under-relaxation factor increases with increa:
both the grid density and the inlet Mach number. For the results presented in Fig. 3,
under-relaxation factors for the various variables varied from a minimum of 0.2 for the g
of size 21 to 0.8 for the grid of size 2000. This increase is attributed to a better solutio
the beginning of the iterative process, as a result of using a larger number of grid po
The value 0.2 could be increased during the iterative process after a relatively good solt
has been established. The need for a small under-relaxation factor at low Mach numb
attributed to the large pressure correction values that result at the beginning of the iter
process and which are used to correct the density. Since at low Mach number density v
tions are small, high under-relaxation is needed. Definitely, the under-relaxation values
be increased after obtaining relatively good estimates. Moreover, the number of iterat
needed to obtain a converged solution increases with increasing the number of grid pc
The required number of iterations to obtain a converged solution (residuals for this c
dimensional problem were driven to machine error), for the cases presented in Fig. 3, v:
from 1000 (for the grid of size 21) to 20,000 iterations when using 2000 grid points. Th
values may not be the optimum ones because of the large number of parameters invc
For example, under-relaxing the interfagealues (including density) may accelerate the
convergence rate. All results presented in this paper were obtained without adopting
a practice. Furthermore, when using an HR scheme for all variables including density
number of iterations needed to achieve a certain level of accuracy is nearly the same ¢
one needed when using an HR scheme for all variables excluding density (for which
upwind scheme is used).

To justify the above statements, additional runs for the subsdic=£ 0.1) and su-
personic Mi, = 7) cases were performed. In these runs, the grid density was varied fr
21 to 2000, and predictions were obtained using the various schemes. Computations
stopped when the maximum residual over all control volumes and for all variables drop
below 10°8. The same initial guess for a given grid was used with all schemes. All variab
were assigned the same under-relaxation factor value. The number of TDMA sweeps fc
variables was set to 1. The under-relaxation factors used and numbers of iterations req
by the various schemes are summarized in Table la for the subsonic flow and Table I
the supersonic flow. These values were obtained after a series of exploratory runs and
found to minimize the number of iterations within the above set constraints.

In the subsonic case (Table la), it was not possible to start the iteration process
relatively coarse grids<{101) with a high value of the under-relaxation factor. For thes
cases, two values are reported. The first one corresponds to the under-relaxation f
needed to prevent divergence at the beginning of the iterations. With this value held con:
throughout the computations, the number of iterations needed are as shown in the first
rows of Table la. These numbers can be greatly reduced, as mentioned earlier, by grac
increasing the value of the under-relaxation factor from the starting value to a maximur
0.95. For dense grids=Q01), the value of 0.95 can be used throughout the computatio
As can be seen, increasing the under-relaxation factor reduces the number of iteratior
average, by a factor of 5. Furthermore, for this case, the number of iterations required b
upwind scheme is only 9% lower for the coarsest grid used and decreases with incre:
grid density until for the finest grid, it becomes equal to the one needed by other schel
Moreover, the number of iterations required when using the SMART scheme for all varial
including density is nearly equal to the one required when using the SMART scheme fo
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TABLE I(a)
Under-Relaxation Factors and Number of Iterations Needed for the Subsonic Flow
in a Converging—Diverging Nozzle i, = 0.1)

Upwind for p, SMART

All Upwind All SMART for uandT
Under- Number of Under- Number of Under- Number of
Grid relaxation iterations relaxation iterations relaxation iterations
21 0.25 2513 0.25 2887 0.25 2883
51 0.4 3242 0.4 4045 0.4 4021
101 0.55 4052 0.55 4446 0.55 4432
21 0.25-0.95 643 0.25-0.95 703 0.25-0.95 694
51 0.4-0.95 636 0.4-0.95 755 0.4-0.95 747
101 0.55-0.95 624 0.55-0.95 714 0.55-0.95 703
251 0.95 851 0.95 894 0.95 873
501 0.95 1562 0.95 1583 0.95 1581
2000 0.95 5703 0.95 5705 0.95 5705

variables excluding density for which the upwind scheme is used. Furthermore, the nun
of iterations generally increases with increasing grid density.

For the supersonic flow, the under-relaxation factors and number of iterations neede
depicted in Table Ib. With the upwind scheme, it was possible to obtain converged soluti
over all grid sizes with an under-relaxation factor of value 0.95. However, it was not possi
with the SMART scheme to use a value higher than 0.6. This has resulted in a notice
lower number of iterations for the upwind scheme. Nevertheless, the number of iterati
required when using the SMART scheme for all variables including density is still ve
close to the one needed when using the SMART scheme for all variables, excluding der
for which the upwind scheme is used.

As a further check on the applicability of the new technique in the subsonic, transol
and supersonic regimes, results are generated for several inlet Mach number vikges |
Mi, < 7 and displayed in Fig. 4a. As shown, the Mach number distributions are in excell
agreement with the exact solution. Moreover, two-dimensional predictions for some of

TABLE I(b)
Under-Relaxation Factors and Number of Iterations Needed for the Supersonic Flow
in a Converging—Diverging Nozzle i, = 7)

Upwind for p, SMART

All Upwind All SMART for uandT

Under- Number of Under- Number of Under- Number of

Grid relaxation iterations relaxation iterations relaxation iterations
21 0.95 34 0.6 130 0.6 110
51 0.95 42 0.6 140 0.6 140
101 0.95 51 0.6 202 0.6 206
251 0.95 73 0.6 383 0.6 390
501 0.95 103 0.6 672 0.6 678

2000 0.95 253 0.6 2269 0.6 2275
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above-presented cases were generated with10® mesh covering one half of the nozzle.
The resultant area-averaged variations of Mach number are depicted in Figs. 4b an
Results were obtained using the SMART scheme for all variables including density.
for the quasi-one-dimensional predictions, results are in excellent agreement with the €
solutions.

Flow over a Circular Arc Bump

The physical situation consists of a channel of width equal to the length of the circt
arc bump and of total length equal to three lengths of the bump. This problem has &
used by many researchers [30, 31, 35, 36] to test the accuracy and stability of nume
algorithms. Results are presented for three different types of flow (subsonic, transonic,
supersonic). For subsonic and transonic calculations, the thickness-to-chord ratio is ]
and for supersonic flow calculations it is 4%. In all flow regimes, predictions obtained o
a relatively coarse grid using the SMART scheme for all variables including density :
compared against results obtained over the same grid using the SMART scheme for all
ables except density, for which the UPWIND scheme is used. Because of the unavailak
of an exact solution to the problem, a solution using a dense grid is generated and tre
as the most accurate solution against which coarse grid results are compared.

Subsonic flow over a circular arc bumpWith an inlet Mach number of 0.5, the inviscid
flow in the channel is fully subsonic and symmetric across the middle of the bump. At
inlet, the flow is assumed to have uniform properties and all variables, except press
are specified. At the outlet section, the pressure is prescribed and all other variable:
extrapolated from the interior of the domain. The flow tangency condition is applied at
walls. As shown in Fig. 5a, the physical domain is nonuniformly decomposed intolf3
control volumes. The dense grid solution is obtained over a mesh of size 388Zontrol
volumes. Isobars displayed in Fig. 5b reveal that the coarse grid solution obtained
the SMART scheme for all variables falls on top of the dense grid solution. The use
the upwind scheme for density, however, lowers the overall solution accuracy. The s
conclusion can be drawn when comparing the Mach number distribution along the lo
and upper walls of the channel. As seen in Fig. 5c, the coarse grid profile obtained u
the SMART scheme for density is closer to the dense grid profile than the one predi
employing the upwind scheme for density. The difference in results between the co:
grid solutions is not large for this test case. This is expected since the flow is subsonic,
variations in density are relatively small. Larger differences are anticipated in the trans
and supersonic regimes.

Transonic flow over a circular arc bump With the exception of the inlet Mach number
being set to 0.675, the grid distribution and the implementation of boundary conditions
identical to those described for subsonic flow. Results are displayed in Fig. 6 in term:
isobars and Mach profiles along the walls. In Fig. 6a isobars generated using a dense
and the SMART scheme for all variables are displayed. Figure 6b presents a compal
between the coarse grid and dense grid results. As shown, the use of the HR SMART scl
for density greatly improves the predictions. Isobars generated over a coarse grid §63
control volumes (c.v.)) using the SMART scheme for all variables are very close to tht
obtained with a dense grid (25254 c.v.). This is different than coarse grid results obtaine
using the upwind scheme for density and the SMART scheme for all other variables, wt
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FIG. 5. Subsonic flow over a 10% circular bump; (a) coarse grid used, (b) isobars, and (c) profiles alonc
walls.

noticeably deviate from the dense grid solution. This is further apparent in Fig. 6¢ wh
Mach number profiles along the lower and upper walls are compared. As shown, the r
accurate coarse grid results are those obtained with the SMART scheme for all variables
the worst results are achieved with the upwind scheme for all variables. The maximum M
number along the lower wal&1.41), predicted with a dense grid, is in excellent agreeme
with published values [30, 31, 35]. The use of an HR scheme for density greatly enhau
the solution accuracy, with coarse grid profiles generated using the SMART scheme
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FIG. 6. Transonic flow over a 10% circular bump; (a) isobars using a dense grid, (b) isobars using var
schemes, and (c) profiles along the walls.

all variables being very close to the dense grid results. By comparing coarse grid pro
along the lower wall, the all-SMART solution is about 11% more accurate than the solut
obtained using SMART for all variables and upwind for density and 21% more accur
than the highly diffusive all-upwind solution.

Supersonic flow over a circular arc bumpComputations are presented for two inlet
Mach number values of 1.4 and 1.65. For these values of inlet Mach number and for
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FIG.7. Supersonic flow over a 4% circular burmigiy = 1.4); (a) coarse grid used, (b) Mach number contours
using various schemes, (c) Mach number contours using a dense grid, and (d) profiles along the walls.

used geometry, the flow is also supersonic at the outlet. Thus, all variables at inlet
prescribed, and at outlet all variables are extrapolatedMipe= 1.4, results are presented
in Figs. 7 and 8. The coarse grid used is displayed in Fig. 7a. Mach number contours
compared in Fig. 7b. As before, the coarse grid all-SMART results<(38 c.v.), being

closer to the dense grid results (1588 c.v.), are more accurate than those obtained whe
using the upwind scheme for density. The fine grid Mach contours are displayed in Fig.
As depicted, the reflection and intersection of the shocks is very well resolved with
undue oscillations. The Mach profiles along the lower and upper walls, depicted in Fig.
are in excellent agreement with published results [61] and reveal good enhanceme
accuracy when using the SMART scheme for evaluating interface density values. The
of the upwind scheme to compute density deteriorates the solution accuracy even thou
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FIG. 8. Supersonic inviscid flow over 4% bumpl(, = 1.4): Mach-number contours.

HR scheme is used for other variables. The all-upwind results are highly diffusive. Fina
results for this case were obtained over a grid 0&x980 nodes, of which 8& 30 were
uniformly distributed in the region downstream of the bump’s leading corner. Resulti
Mach contours are compared in Fig. 8 with four other solutions [31, 62, 63] using the s¢
grid density. The comparison demonstrates the credibility and superiority of the curr
solution methodology. The wiggles and oscillations in some regions around the sh
waves in the published solutions are not present in the newly predicted one.
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For Mi, = 1.65, results are depicted in Fig. 9. The coarse grid used is shown in Fig.
and the Mach contours are compared in Fig. 9b. The trend of results is consistent with \
was obtained earlier. Fine grid results displayed in Figs. 9c and 9d are in excellent agree
with published results [30, 35]. The Mach contours in Fig. 9c are very smooth and do
show any sign of oscillations. The profiles along the lower and upper walls indicate o
more that the use of an HR scheme for density increases the solution accuracy. Thu
subsonic, transonic, and supersonic flows the use of an HR scheme for calculating inte
density values increases the solution accuracy.
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FIG. 10. (a) Comparison of % error and (b) convergence history for the transonic figy=€ 0.675) over a
10% circular bump. (c) Comparison of % error and (d) convergence history for the supersonidlflow (.65)
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Effect of grid size. As for the previous problem, the performance characteristics of tl
newly suggested method is studied by obtaining a series of solutions, using different
sizes, for the transonidf;, = 0.675) and supersonid, = 1.65) cases. The variation of
error with the grid size along with the convergence history is depicted in Fig. 10. The perc
error in the solution was calculated using Eq. (22) with.ctbecause of the unavailability
of an exact solution, replaced by a solution obtained over a fine mesh of size Z80grid
points. As can be seen, the error decreases with increasing the grid size. By comparing
in Figs. 10a and 10c, it is obvious that improvements in predictions are more pronounce
the supersonic case where changes in pressure have higher effects on density. In Fig
and 10d, the convergence history for the solutions obtained using a grid of size H}
grid points is displayed. For reasons explained earlier, the two plots reveal the neec
fewer iterations to obtain a converged solution in the supersonic case. It should be stre
that it is not the intention of this work to study the convergence characteristics of press
based methods. The algebraic equation solver used here is the line-by-line TDMA. The
of multigrid methods [64] or other solvers [65, 66] would definitely accelerate the rate
convergence. This may equally be true with preconditioning methods [15-22]. Neverthel
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the virtues of using an HR scheme for evaluating interface density values are undoubt
clear.

Supersonic Flow over a Step

The physical situation and boundary conditions for the problem are depicted in Fig. !
The problemwasfirst solved using the upwind scheme, and the predicted isobars are dej
in Fig. 11b. In Fig. 11c, the isobars reported in [29] are presented. As shown, the cur
predictions fall on top of the ones reported by Marchi and Maliska [29], eliminating a
doubts about the correctness of the implementation of the solution algorithm and boun
conditions. The isobars resulting from a dense grid soluti88 x 108 c.v.) using the
upwind scheme for all variables are presented in Fig. 12a. The effectiveness of usin
HR scheme for density is demonstrated through the comparison depicted in Fig. 12h.
different isobars representing pressure ratios of values 0.9 and 2.5 are considered. Sol
obtained over a course gri@8 x 36 c.v.) using (i) the SMART schemes for all variables
(ii) the SMART scheme for all variables except density and the upwind scheme for den:
and (i) the upwind scheme for all variables are compared against a dense grid solt
(238 x 108 c.v.) generated using the upwind scheme for all variables. Once more the vir
of using an HR scheme for density is obvious. The coarse grid isobars obtained using
SMART scheme for all variables, being nearly coincident with dense grid isobars,
remarkably more accurate than coarse grid results obtained using the SMART schem
all variables except density and the upwind scheme for density.

Ideal Unsteady Duct Filling

Having established the credibility of the solution method, an unsteady process of (
filling is considered. This problem resembles the well-known shock tube problem rece
used by Karimian and Schneider [67] and Darbandi and Schneider [68] in testing t
pressure-based methods. The physical situation for the problem consists of a duct cor
ing a gas ¢ = 1.4) that is isentropically expanded from atmospheric pressure. The d
is considered to be frictionless, adiabatic, and of constant cross section. Moreover,
assumed that the duct is opened instantaneously to the surrounding atmosphere, that
is isentropic, and that in the fully open state the effective flow area at the duct end is equ
the duct cross-sectional area. The unsteady one-dimensional duct filling process is s
using a two-dimensional code over a uniform grid of density 9 control volumes, a
time step of value 10*, and the SMART scheme for all variables.

The problem is solved for a surrounding to duct pressure ratio of 2.45 and gener
results are displayed in Fig. 13. Because of the lower pressure of the gas contained i
duct, when the duct end is suddenly opened, a compression wave is established instant
shock wave. The wave diagram for the process is shown in Fig. 13a. The shock wave m
in the duct until the closed end is reached. On reaching the closed end, the compression
is reflected and the duct filling process continues until the reflected shock wave is at the
end. Beyond that, duct emtying starts and computations were stopped at that mome
time. In addition, the path of the first particle to enter the duct is shown in the figure. This v
computed by storing the duct velocities at all time steps and then integrating in time to lo
the position of the particle. Results depicted in Fig. 13a were compared against similar «
reported by Azoury [69] using a graphical method. The two sets of results were found tc
in excellent agreement with the ones computed here, falling right on top of those repot
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FIG. 11. Supersonic flow over an obstacle: (a) physical situation, (b) isobars using the upwind sche
(40 x 38 grid points), and (c) results obtained by Marchi and Maliska [29] using the upwind scheme@lgrid
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The variation of Mach number with time atthe open end of the ductis displayed in Fig. 1
With the exception of the slight overshoot at the beginning of the computations, the M
number remains constant throughout the filling process, and it instantaneously decrea:
zero at the time when the reflected shock wave reaches the open end of the duct. When
the same reference quantities, the analytical solution to the problem reported in [69] pre
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FIG. 13. (a) Wave diagram for optimum duct-filling process; (b) Mach number distribution at inflow
(c) variation of mass with time.

a constant Mach number of value 0.4391, which is 0.21% different than the one obtai
here. Moreover, the instantaneous decrease of Mach number to zero is well predicted b
method. Finally, the increase in mass within the duct is presented in Fig. 13c. As expec
because ofthe constantvalue of the inlet Mach number, the massincreases linearly with

CONCLUDING REMARKS

A new collocated high-resolution pressure-based algorithm for the solution of fluid fl
at all speeds was formulated. The new features in the algorithm include the use o
HR scheme in calculating the density values at the control volume faces and the us
the NVSF methodology for bounding the convection fluxes. The method was testec
solving four problems representing flow in a converging—diverging nozzle, flow ovel
bump, flow over an obstacle, and unsteady duct filling. Mach number values spanning
entire subsonic to supersonic spectrum, including transonic flows with strong normal st
waves, were considered. In all cases, results obtained were very promising and reve
good enhancement in accuracy at high-Mach-number values when calculating inter
density values using a high-resolution scheme.

APPENDIX NOMENCLATURE
a%,al,. Coefficients in the discretized equation
b"; Source term in the discretized equation gor

C, Coefficient equals to/RT



D[¢] The D operator

D[¢] The vector form of theD operator

F¢ Convective flux at cell facef”

H[¢] The H operator

H[¢] The vector form of theH operator

i Unit vector in thex-direction

] Unit vector in they-direction

JE Total scalar flux across cell face * due to convection
JP Total scalar flux across cell facd " due to diffusion
J¢ Total scalar flux across cell facd *

M Mach number

P Pressure

Q%  Source term fop

R Gas constant

St Surface vector

T Temperature

t Time

u,v  Velocity components in the- andy-directions

Us Interface flux velocity ¥ - S¢)

v Ui + vj

X,y  Cartesian coordinates

Greek Symbols

Al¢] The A operator

D Dissipation term in energy equation

re Diffusion coefficient forg

Q Cell volume

B Thermal expansion coefficient

St Time step

é Normalized scalar variable

¢ Scalar variable

v Viscosity

0 Density

Subscripts

e, w,... Referstothe east, west,. face of a control volume
E,W,... Referstothe East, West,. neighbors of the main grid point
f Refers to control volume facé

NB Refers to neighbors of the grid point

P Refers to theP grid point

HIGH-RESOLUTION ALGORITHM FOR FLUID FLOW

Superscripts

(n)

/

Refers to values from the previous time step

Refers to value from the previous iteration

Refers to intermediate values at the current iteration
Refers to correction field

127
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W)

Refers to convection contribution
Refers to diffusion contribution

HR Refers to values based on HRR scheme

© < X

Refers to component ir-direction
Refers to component ip-direction
Refers to dependent variable
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